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SUMMARY 

The total solution of a three-dimensional model for computing the transport of salinity, pollutants, suspended 
material (such as sediment or mud), etc. in shallow seas involves many aspects, each of which has to be treated in 
an optimal way in order to cope with the tremendous computational task involved. In this paper we focus on one of 
these aspects, i.e. on the time integration, and discuss two numerical solution methods. The emphasis in this paper 
is on the performance of the methods when implemented on a vector/parallel, shared memory computer such as a 
Cray-type machine. The first method is an explicit time integrator and can straightforwardly be vectorized and 
parallelized. Although a stabilizing technique has been applied to this method, it still suffers from a severe time 
step restriction. The second method is partly implicit, resulting in much better stability characteristics; however, as 
a consequence of the implicitness, it requires in each step the solution of a large number of tridiagonal systems. 
When implemented in a standard way, the recursive nature would prevent vectorization, resulting in a very long 
solution time. Following a suggestion of Golub and Van Loan, this part of the algorithm has been tuned for use on 
the Cray C98/4256. On the basis of a large-scale test problem, performance results will be presented for various 
implementations. 

KEY WORDS transport models; 3D advection4ifision equations; numerical time integration; vectorization; pd le l  
processing 

1. INTRODUCTION 

Mathematical modelling of the transport of salinity, pollutants, suspended material (such as sediment 
or mud), etc. in shallow seas involves the numerical solution of 3D partial differential equations of 
advection-difision-reaction type. The total solution of such a transport model is very complex and 
has many different aspects, e.g. the choice of the spatial discretization technique, the choice of the 
corresponding data structures (which has a significant influence on the performance), the treatment of 
the boundary conditions at the sea bed and at the free water surface, the choice of the time integration 
method, etc. It is clear that the tremendous computational task imposed by this kind of problem can 
only be tackled if each of these aspects is thoroughly investigated and treated by sophisticated 
numerical techniques in combination with the most powerful computers. In this paper we focus on the 
time integmtion part and discuss the implementation of some algorithms that efficiently exploit the 
vectorization and parallelization facilities offered by Cray-type computers. In a previous paper’ several 
time integration techniques have been studied and compared with respect to the efficient solution of 
the 3D transport problem. The conclusion formulated in Reference 1 was that stabilized, explicit 
Runge-Kutta methods may be eligible candidates. However, as a disadvantage, these methods have to 
obey a rather restrictive condition on the time step because of stability reasons. A remedy to avoid the 
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stability condition is offered by the odd-even line hopscotch method. Since this method is partly 
implicit, a large number of uncoupled tridiagonal systems have to be solved in each step. Normally, the 
straightfornard and numerically stable way to solve these systems does not allow one to exploit 
vectorization facilities owing to the recursive nature of the standard decomposition approach. Since the 
systems are uncoupled and of identical shape (which includes a similar storing of the matrix elements 
and the right-hand-side components), it is possible to vectorize (over all the tridiagonal systems) each 
step within the standard decomposition algorithm. This technique, which will be termed vectorization- 
across-tridiagonal-systems, was originally proposed by Golub and Van Loan2 and has also been used 
by de Goede3 in his 3D hydrodynamical shallow water model. This vectorization technique results in a 
considerably increased performance. Moreover, it can straightforwardly be combined with 
parallelization for use on a multi(vector)processor system; the atexpert utility4 (to predict performance 
on a dedicated system) indicates almost optimal speed-up (more than 90% efficiency). When equipped 
with this linear system solver, the hopscotch method turns out to be superior to the stabilized Runge- 
Kutta methods. 

The paper is organized as follows. In Section 2 we discuss the actual transport model that has been 
studied. Section 3 is devoted to the discretization of this PDE. First we briefly outline the spatial (or 
semi-) discretization method and the consequences for the data structures that we need, as well as the 
resulting vectorization capabilities. Next, and this is the major aim of the present paper, two time 
integration methods are described in some detail, including the motivations for their choice. In Section 
4 we survey the various possibilities to solve the linear systems occurring in the hopscotch integrator 
and discuss several options to efficiently cope with the Jacobian matrices. Furthermore, the actual 
implementation of the solver is discussed. Its performance is illustrated in Section 5 by applying it to a 
large-scale test example. Conclusions are formulated in Section 6. 

2. DEFINITION OF THE MATHEMATICAL MODEL 

The mathematical model describing transport processes in three dimensions is given by the system of 
advection4iffusion-reaction equations' 

where ci are the unknown concentrations of the contaminants. The local fluid velocities u, v, and w (in 
directions x ,  y, and z respectively) have to be provided by a hydrodynamical model; since this paper 
merely discusses the solution of (l), the velocity field is considered to be known in advance. The fall 
velocity wr, which may be a non-linear function of the concentration, is only relevant in the case of 
modelling the transport of suspended material. The terms gi describe chemical reactions, emissions 
from sources, etc. and therefore depend on the concentrations ci. Thus the mutual coupling of the 
equations in system (1) is only due to the functions gi. In the present paper we shall confine our 
considerations to the numerical modelling of a single transport equation and thus omit the subscript i in 
the sequel. The extension to systems is a subject of current research and will be discussed in a 
forthcoming paper. Finally, the diffusion coefficients E~ cY and E= are assumed to be given functions. 

The physical domain in space is bounded by vertical, closed boundary planes, by the water elevation 
surface and by the bottom profile. On these boundaries Dirichlet, Neumann or mixed boundary 
conditions will be prescribed. Supplementing this with an initial condition, the concentration c can be 
computed in space and time. 
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3. DISCRETIZATION METHODS 

To arrive at a fully discrete numerical approximation, we will follow the method-of-lines (MOL) 
approach. That is, we first transform equation (1) into a system of ordinary differential equations 
(ODEs) by discretizing only the spatial derivatives and leaving time continuous; then these ODEs will 
be integrated in time numerically. In the following subsections the two steps in this discretization 
process will be discussed separately. 

3.1. Spatial discretization 

Typically, the physical domain in space is quite irregular in both horizontal and vertical directions. 
One possible way to cope with this situation is to map the physical domain on a rectangular box by 
means of co-ordinate transformations. The advantage of this approach is that the physical boundaries 
can be exactly represented; however, a serious disadvantage is a much more complicated mathematical 
model and, additionally, the danger of introducing coefficients of large magnitude. This increases the 
stiffness in the resulting ODES and excludes the possibility of using explicit time integration 
techniques (see Reference 1 for a discussion on this aspect). 

Therefore we decided to follow the so-called ‘dummy point’ approach. By this we mean that the 
whole physical domain will be enclosed by a rectangular box. Obviously, the disadvantage is that we 
may introduce many artificial (meaningless) points. However, the regular grid structure allows for an 
efficient implementation on vector computers, which compensates for the additional computational 
effort. 

Before applying the semi-discretization process, it is convenient to rewrite equation (1) taking into 
account the particular applications we have in mind. As usual, we shall only consider the 
incompressible case, i.e. we assume u, + v,, + w, = 0. Furthermore, the diffusion coefficients E,, E,, E, 

are assumed to be constant and equal to E .  Recalling that we are concentrating on a single transport 
equation, (1) then simplifies to 

(2) 
---u--v--w-+- a C  - ac ac ac a(wfc) . E ( % + $ + E )  + g .  
at ax  ay az az 

The first step in the semi-discretization process is to let the physical domain be enclosed by a 
rectangular box containing the grid points 

Pj,k,rn:= (XO +jAx,yo+kAy,zo+mAz),  j = O ,  ..., J +  1, 

k = O  ,..., K + 1 ,  m = O  ,... , M + 1 ,  ( 3 4  
where (xo, yo, zo) corresponds with the south-west comer point at the bottom of the rectangular box. It 
will be assumed that the mesh parameters Ax, Ay and Az are such that the physical boundaries can be 
approximated by a subset of grid points with sufficient accuracy. This subset of boundary grid points 
will be denoted by BB and divides the remaining grid points into outer and inner ones lying ‘outside’ 
and ‘inside’ dB. These sets of points are denoted by Bout and Bh respectively. Furthermore, we assume 
that the enclosing box is such that no grid points of aB are on the boundary planes of the box (i.e. the 
indices j ,  k and m of the boundary points satisfy 1 5 j 5 J, 1 5 k 5 K and 1 5 m 5 M). Here we 
remark that the spatial grid does not necessarily need to be equidistant in the various spatial directions. 
For example, the use of a stretched grid in the vertical may be necessary to adequately resolve the 
concentration field in the neighbourhood of the sea bed in the case of suspended sediment. Although 
such a stretched grid will have an impact on the stifhess of the resulting ODE, it is not essential for the 
discussion that follows. 

Next the spatial differential operators a/ax, a/& and a/az are replaced by (standard) symmetric 
differences. This choice is justified by the fact that the present problem does not give rise to very large 



352 B. I? SOMMEIER AND J. KOK 

gradients in the solution (such as steep fronts or even discontinuities), which would necessitate the use 
of unsymmetric (i.e. upwind) discretizations. Since the principal aim of this paper is the time 
integration aspect, we do not continue the discussion on the best choice of the spatial discretization. Of 
course, to arrive at the total solution of the transport problem, this aspect also requires thorough 
investigation. We refer to the recent overview6 in which a considerable amount of literature on the 
spatial discretization of advection-dominated partial differential equations is surveyed. 

Furthermore, we denote the numerical approximations at Pj,k,m to c, u, . . . by capitals 
C/,k,m ,Uj,k,m . . . and we introduce the spatial shift operators X,, Y ,  and Z+ defined by 

& q , k , m : =  cj*l ,k,m 7 y k q , k , m :  = C / , k f l , m ,  Z * q ! k , m :  = C j , k , m f l .  

Then on the computational set of grid points S defined by 

s : = ( P j , k , m : l  < j < J , 1  < k < K , 1  < m < M }  (3b) 
the associated ODES take the form 

where w(c)  : = y ( c )  + c&f(c)/ac. 
The next step is to take into account the boundary conditions. If Pj,k,m is a (physical) boundary point 

where the boundary condition is of Dirichlet type, then q , k , m  is explicitly given, so that by means of 
differentiation with respect to time we obtain ODES of the form 

which should replace the ODES occurring in (4a) at all Dirichlet-type boundary points. 
If Pj,k,m is a boundary point of non-Dirichlet type, then the corresponding ODE in (4a) asks for the 

concentration at one or more outer grid points. By means of the boundary conditions these auxiliary 
concentrations can be explicitly expressed in terms of concentrations at inner (or boundary) grid 
points. Especially at the free water surface and the sea bed this will give rise to rather complicated 
expressions involving interpolations. This aspect is certainly worth a separate study and is not 
discussed in this paper. Finally we assume ‘dummy’ concentrations at all points in the computational 
set S which are in BOu+ 

In conclusion, the equations (4) corresponding to the set of grid points S as defined by (3b) define a 
second-order-consistent semi-discretization of the initial-boundary value problem (1) of dimension 
N: = J K M .  Notice that only the concentrations defined by this system of ODES corresponding to the 
grid points of Bk and 8 3  are relevant. 

In the analysis of time integrators for (4) it is more convenient to represent this system in the form 

= F(t ,C( t ) )  := A,(t)C(t)  +A,(t)C(t)  +A,( t )C(t)  + W,(C(t))C(t)  + G(t, C ( t ) )  dt 
+ Bx(t) + BJf) + B&), ( 5 )  

where C(t) is a vector of dimension N containing all concentrations defined at the points of S ,  A&), 
A,,(t) and A,(t) are N-by-Ntridiagonal matrices depending only on t, and WAC) is an N-by-Ntridiagonal 
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matrix which vanishes if the fall velocity wf occurring in (1) vanishes. The N-dimensional vector 
G(t,  C(t)) is the discrete analogue of the source function g ,  and the vectors B,(t), BJt) and Bz(t) 
represent the inhomogeneous contributions of the boundary conditions at the vertical east and west 
boundaries, at the vertical north and south boundaries and at the surface and bottom boundaries 
respectively. Notice that, assuming a three-point coupling in the spatial discretization, ( 5 )  is the general 
form of the resulting ODES. 

Owing to the above ‘dummy point’ approach, the data structures in the code are extremely simple: 
the arrays U, V and W (containing the velocity field) and the array DCDT (containing the time 
derivatives of the concentrations) are defined on the computational domain S ;  hence these three-times- 
subscripted arrays have indices running from 1 to J, from 1 to K and from 1 to M respectively. The 
array C (containing the concentration vector C) is defined on the whole enclosing box, where the 
indices run respectively fiom 0 to J + 1, from 0 to K + 1 and from 0 to M + 1. A consequence of this 
approach is that the whole array C will contain values including the meaningless values corresponding 
to grid points lying in Bout. Hence, on entering the subroutine F to calculate the time derivatives, the 
following steps have to be performed: (i) in the case of non-Dirichlet boundary conditions the points in 
Bout which are at a distance of one grid point from aB should be calculated using the boundary 
conditions (notice that these points may lie on the boundary of the enclosing box); (ii) calculate the 
time derivatives of the concentration (i.e. evaluate the right-hand side of (4a)) at all points belonging to 
S and store these values in the array DCDT; (iii) in the case of Dirichlet boundary points the 
corresponding values in DCDT have to be overwritten by the expressions defined in (4b). In this way 
an efficient implementation of the subroutine F on a vector machine can be obtained (see the results in 
Section 5).  

3.2. Time integration methods 

In Reference 1 several time integration techniques have been discussed and compared on the basis of 
their suitability to solve transport equations. It turned out that the explicit, stabilized Runge-Kutta 
methods and the odd-even line hopscotch method are the most promising for integrating the space- 
discretized transport equation ( 5 )  on Cray-type computers. In the following subsections these methods 
will be discussed in detail. 

3.2.1. Stabilized Runge-Kutta methods. The q-stage Runge-Kutta method that we consider to 
advance the solution of ( 5 )  over one step of size At is defined by 

c(0) = c n l  

CO’) = C,  + a,AtF(t, +/+At, CO‘-l))l 

Cn+l = c(q). 

j = 1, . . . l q ,  ( 6 )  

Here C, denotes the numerical approximation to the solution of the ODE ( 5 )  at t, = n At and the 
quantities Cel denote intermediate approximations. In this method the free parameters a, and p, will be 
chosen to give the method the required properties: second-order accuracy in time, as large a stability 
boundary as possible and minimal costs per step. The first requirement is fulfilled by setting aq = 1 
and aq-l = pq = i. The remaining ajs can be used to give the method optimal stability characteristics. 
Since our transport problem is usually convection-dominated, we decided to optimize the stability 
boundary along the imaginary axis (for a more detailed discussion on this aspect we refer to Reference 
1). It is well k n o ~ n ” ~  that for odd values of q the second-order scheme (6) possesses an optimal 
imaginary stability boundary pimag = q - 1. In Table I the corresponding a,-values are listed for 
various values of q (for the sake of completeness we also give the values for p d ,  the corresponding 
stability boundary along the real axis). Finally, the requirement of minimal costs is obtained by 
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Table I. Parameters aj to obtain an optimal imaginary stability bounda~~ fl- 
for (6) 

4 at a2 a3 a4 a5 a6 a7 Binla* B d  
4 114 113 2 4 2  2.78 
5 114 116 318 4 2.59 
7 116 1/12 219 4/19 19/54 6 3.00 
9 118 1/20 5/32 2/17 17/80 5/22 11/32 8 3.31 

‘freezing’ the t-argument in the first q - 1 stages, i.e. pj = 0 , j  = 1, . . . , q - 1. In the case of ( 5 )  a 
substantial part of the effort in calculating F(t, C) comes from the evaluation of the matrices A&), A,@) 
and A&), the vector G(t, C(t)) and the boundary conditions. Hence, except for the first and the last 
stage (i.e. fo r j  = 0 and j = q), these quantities do not need to be evaluated. 

Moreover, the storage requirements are relatively modest and the structure of system ( 5 )  allows an 
extremely efficient implementation on vector computers. 

3.2.2. Odd-even line hopscotch methods. The class of hopscotch methods’ belongs to the class of 
so-called operator-splitting methods. To define the specific odd-even line hopscotch (OELH) method 
that we have in mind, the right-hand-side function F in (5) is assumed to be split into 

F(t, C(t)) = FOP, C(t>> + F*(4 C(t>>, (7) 

where Fo is the vector that is obtained from F by replacing all components corresponding to a grid 
point Pi,k,m where j + k assumes an even value by zero. Similarly, F, is obtained if all elements in F 
corresponding to a grid point for which j + k is odd are replaced by zero. Notice that the third index, m, 
is not involved in this definition, which means that we apply the same splitting on each horizontal 
plane of the grid, or equivalently, all grid points lying on the same vertical gridline are either in FO or in 
F,. This observation is crucial for the OELH algorithm. The configuration of the computational points 
is illustrated in Figure 1. 

Now we define the two-stage, second-order splitting method 

Starting from C,, the numerical solution at t = t,, the approximation Cn+l at the next step 
point is obtained by performing two stages; Cn+l,2 can be considered as an intermediate 
approximation. 

Owing to the aforementioned splitting and observing that the discrete system (4) possesses a 
three-point coupling in the horizontal direction, we see that in the first stage the ‘*-components’ of 
Cn+l,2 can be computed without evaluating Fo. Hence the first stage can be split into an explicit 
forward Euler-type calculation for the ‘*-components’, followed by an implicit backward Euler- 
type calculation for the ‘o-components’. Since the ‘*-components’ are already known at the 
intermediate time level t, + At/2, each ‘0-component’ is only coupled in the vertical direction 
(see Figure 1). Since we also used a three-point coupling to discretize a/az and @/az?, this im- 
plicit part of the algorithm results in the solution of tridiagonal systems along each vertical grid 
line. Of course, similar arguments hold for the second stage, but now the roles of the two types of 
components are interchanged. 
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Figure 1. Configuration of the grid points to be used in the OELH method. Owing to the three-point coupling and the absence of 
mixed derivative terms, the calculations in the horizontal directions can be made explicit. Associated with each vertical grid line 
we obtain a tridiagonal system; the quintessence of the method is that all these systems are uncoupled 

Using these observations, the scheme (8) can be recast in the form 

Observe that in the explicit part of both stages the corresponding F-evaluation can be saved. Apart 
from the very first step, these F-evaluations can be expressed in terms of the concentrations at a 
previous time level. On using this substitution, we arrive at the so-called ‘fast form’. As a result, the 
total amount of work per step consists of solving JK uncoupled, implicit relations each of dimension 
M. For this purpose one usually applies a (modified) Newton process. Notice that one Newton iteration 
will suffice if the fall velocity term wf is not needed in the model, since then the equation is linear in C. 
This case has been considered in the numerical experiments, so that (9) requires one F-evaluation over 
the whole field plus the solution of JK tridiagonal linear systems of dimension M (in Section 4 we give 
a detailed description how these systems can be solved efficiently on a vector computer). It is worth 
mentioning that the storage requirements of the OELH method are quite modest; apart from the arrays 
to store the velocity field (which are anyhow needed by every ‘transport solver’), (9) needs two arrays 
to store the concentration vector C at the various time levels, one array to hold the time derivative (i.e. 
DCDT), three arrays for housing the tridiagonal Jacobian matrices and ‘half’ an array to gather the 
right-hand-side vectors in the linear equations, which amounts to 6.5 arrays (of dimension N). 

The main reason for constructing this particular variant within the hopscotch family is that usually 
the most severe restrictions on the time step originate from the discretization in the vertical direction, 
i.e. (see (1) and (4a)) the terms Iwl/Az and E~(&z)’ are usually larger than the similar expressions 
corresponding to the horizontal direction. Hence in explicit methods the time step will be dictated by 
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stability conditions induced by the vertical discretization. Since the OELH method is explicit in the 
horizontal but implicit (and hence unconditionally stable) in the vertical, it usually allows for time steps 
which are in accordance with the size that we would require for accuracy reasons. 

4. SOLVING THE LINEAR SYSTEMS IN VECTOR MODE 

In the previous section we have seen that the OELH method (9) requires the solution of JK tridiagonal 
systems of dimension M. In this section we describe the selected linear system solver which is tailor- 
made for the present application of a three-dimensional numerical transport model. Details of the 
implementation with respect to optimal vector performance are discussed as well as the possibility of 
exploiting several parallel processors. Furthermore, we explain some additional options that have been 
incorporated in the linear solver (which can be of use in the case of different time integrators) and 
finally we present performance results. 

4.1, Algorithmic aspects 
In solving the tridiagonal system Ax = b, we decompose the matrix A as LD-'U, where D is a 

diagonal matrix and L and U are respectively lower and upper bidiagonal matrices, both with unit 
diagonal. During development we have compared this decomposition with the obvious alternatives LU 
and L-'U, in particular with respect to the overall number of operations and possibilities for fine 
tuning regarding vector performance. Apart from the opportunity that LD-'U offers to save on the 
number of divisions, the merits of the three methods do not differ conspicuously. The observed slight 
advantage of the first method can be attributed to the circumstances that it combines best (on average) 
with all additional facilities that we have chosen to implement, namely to combine decomposition and 
solution in one subroutine and the possibility to reuse a stored decomposition. Furthermore, the 
implementation is suitable for all possible couplings of the unknowns which may stem from a coupling 
in either the x-, y- or z-direction of the physical domain. This feature is not actually exploited by the 
OELH method (we recall that this method is only implicit in the vertical), but it gives the linear solver 
the flexibility to be used in e.g. LOD-type integration methods (see Reference 1 for a discussion of 
such methods in the present context). 

Standard solvers for large tridiagonal systems are publicly available through e.g. LAPACK" (which 
provides the subroutines SGTTRF for factorizing a tridiagonal matrix and SGTTRS for the 
subsequent forwardhackward substitution) and the Cray Scientific Subroutine library SCILIB 
(SDTSOL would be a candidate). The main reason for developing our own implementation is the fact 
that all tridiagonal systems are uncoupled and, moreover, are of similar shape and have equal 
dimension. These properties allow an efficient implementation especially for vector processors 
employing the method of vectorization-across-systems which is described below. 

We will first describe the LD-'U decomposition method for a single tridiagonal system (of 
dimension n).  With proper subscript notation the method reads 

D1 := 1/Al,l 
for i = 2 until n 

Ui-l,i: = Ai-l,, * Di-1 (Ui-l,i not needed) 
Li,i-l: = Ai,i-l * Di-1 
Di: = l/(Ai,i - Lli-1 * Ai-1~) 

(Solution of Ax = b: ) 
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XI:= bl 
for i = 2 until n 

xi:= bi - Lli-1 * xi-1 
x,:= D, * x,, 
for i = n - 1 step - 1 until 1 

xi:= Dj * (xi - Ai,j+l * xj+l) 

An obvious Fortran implementation, which receives the (co)diagonals of the input matrix A in one- 
dimensional mays L(2: n), D( 1 : n) and U(2: n) and delivers the decomposition results in the same three 
arrays and the solution in the array B that initially contained the right-hand-side vector, is given by 

C 
C 

Input: matrix in L(2: N), D(l : N), U(2: N), right-hand side in B ( l  : N). 
i-th row of L and i-th column of U and i-th diagonal element of D: 
D(1) = I.O/D(I) 
DO I = 2, N 

L(I) = L(I) * D(I-I) 
D(I) = I.O/(D(I) - L(I) * U(I)) 

END DO 
We now have matrix L with unit diagonal in L, D-’ in D, U is not computed 
We proceed with forward, scale and back solve: 

C 
C 

D O I = 2 , N  

END DO 
B(N) = D(N) * B(N) 
DO I = N-I, 1, -1 

B(I) = B(I) - L(I) * B(I-1) 

B(I) = D(I) * (B(1) - U(I+I) * B(I+I)) 
END DO 

C Solution in B. 

For the OELH method, in which we have to solve JK systems of dimension M, a straightforward 
implementation would be to put the above implementation for solving a single system into a loop 

DO IND = 1, J*K 
{the previous source code, with N replaced by the actual dimension M of each system} 
{and, since we are dealing with three-dimensional arrays, all subscripts (I) replaced by (IND,I,I)} 
{and similar substitutions for 1+1 and 1-1) 

END DO 

However, owing to the recursive nature in the inner loops, this approach will result in a poor 
performance on vector processors. The trick to obtain good vector code, as described by Golub and 
Van Loan’ and called ‘vectorization-across-tridiagonal-systems’, is to interchange the inner and outer 
loops. This results in a number of nested loops with the ‘IND-loop’ as the inner one. For example, the 
following loop in the single-system implementation 

DO I = 2, N 
B(I) = B(I) - L(I) * B(I-1) 

END DO 

becomes 

D O I = Z , N  
DO IND = 1, J*K 

B(IND, 1, I) = WIND, 1, I)-L(IND, 1, I) * B(IND, 1, 1-1) 
END DO 

END DO 
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In fact, each step in the original Gaussian elimination process is now performed in vector mode, 
since the vectorizable inner loop runs over all systems. This approach works perfectly well for the 
present class of problems. 

We remark that in the above description the index I is always the third index in the three-dimensional 
arrays; this is because the OELH method is implicit in the vertical (i.e. z-) direction, which corresponds 
with the third index. As a matter of fact, our tridiagonal solver is more general in the sense that it is 
also capable of treating systems originating from implicitness in the x- or y-direction; in those cases the 
index I will be the first or second index respectively in all three-dimensional arrays. In the next 
subsection the influence on the performance is shown. For full details on all three cases of coupling we 
refer to the Fortran 77 listing in the appendix to the institute report of the present paper." 

4.2. Implementation aspects 

We will briefly touch on a number of issues that are of importance for the development of the final 
implementation. During the development several design decisions concerning details were taken after 
intensive measurement of performance differences for all of the possible branches discussed below. 

(1) Branching with respect to the direction ofthe coupling ofunhowns. Different implementations are 
used to treat the linear systems arising from a coupling in the x-, y- or z-direction of the physical 
domain. In these cases the order in which data storage places are accessed is completely different. 

(2) Keeping and reusing the decomposition results. One design decision taken is to store the 
decomposition results in such a way that they can be reused efficiently. Therefore the results of the 
decomposition (and of the solution) are delivered in the storage space containing the original input. 
Although costs are connected with this way of storing the decomposition, the advantage is clear in 
the case where the decomposition is reused for a system with only a new right-hand side. 

(3) Parallel processing possibiliy. The final implementation of the tridiagonal system solver is 
parametrized with Npp, the number of parallel processors to be employed. It is extremely simple to 
split the complete workload into Npp portions of (approximately) equal size which are completely 
independent. A speed-up of 4 (using all four processors of the Cray C9814256) would be 
obtainable, but the splitting of long loops into four parts slightly decreases the performance on a 
single vector processor. This is confirmed by a couple of experiments where we obtained a parallel 
speed-up of 3.3-3.8. 

(4) Fine tuning. The actual implementation receives the data of a Jacobian matrix J and a time 
increment At from which it first computes the coefficient matrices A = I - At J that will 
subsequently be decomposed. Much attention has been given to combining loops that are 
described as different tasks into single loops whenever possible. This loop combining has been 
applied not only for the above-mentioned setting-up of A and its decomposition, but also for 
combining decomposition and forward substitution. 

( 5 )  About vectorization-across-tridiagonal-systems. In order to employ vectorization-across-trihag- 
onal-systems, Golub and Van Loan' recommended that the data should be reordered such that 
successive computations (i.e. corresponding iterations of different tridiagonal systems) can access 
successive array elements. In our application this would require complete copying of the data in a 
different order before proceeding with the decomposition. However, on the Cray C9814256 such a 
data conversion is not at all needed, since processing is equally efficient with loops in which we 
jump with large but constant stride through the accessed memory. 

In Table I1 we summarize the results of timing experiments for the tridiagonal system solver. The 
experiments have been carried out with J = K = 101 and M = 1 1, so all arrays have dimensions (101, 
101, 11). 
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Table 11. CPU times (in milliseconds) and Mflop rates on a Cray C98/4256 using 
one processor 

Scalar mode Vector mode 

Coupling CPU Mflops CPU Mflops Speed-up 

In x-direction 66.9 26.7 3.58 489.1 18.7 

In z-direction 67.1 25.4 3.14 542.4 21.4 
In y direction 7 1.8 25 *O 3.57 502.8 20.1 

5.  NUMERICAL EXPERIMENTS 

To show the performance of the methods described in the previous sections, we take the example 
problem (see also Reference 1) 

with Neumann conditions of the form &/an = h( t ,x , y , z )  on all boundaries of the physical domain 
0 5 x 5 L,, 0 5 y 5 Ly, -L, 5 z 5 0. In our experiments, where the emphasis is on the behaviour in 
time of the solution procedure, it is convenient to have the exact solution at our disposal. This allows 
for easy measurement of the global errors. In terms of the scaled co-ordinates k = x / L , , j :  = y/LY and 
Z: = z/Lz the concentmtion c is prescribed as 

C ( t , X , Y , z )  = exPG - f ( t )  - Y"2 - r( t ) )2  + (3 - s(t))21)1 (lob) 

where the functions r, s andfare defined by r ( t ) :  = [2 + cos(2nt/TP)]/4,s(t): = [2 + sin(2nt/Tp)]/4 
andf (t) : = 4t/ (Tb + t). Hence a local concentration is advected in a rotation (with period Tp) around 
the center of the domain. Furthermore, we see that the concentration is slightly decreasing in the 
vertical direction (when going downwards) and damped in time. (To get a better impression of the 
behaviour of this function, we refer to the pictures in Figures 2(a) and 2@), where the solution is 
plotted for various points in space and time.) The inhomogenous function g and the function h defining 
the boundary conditions follow from this exact solution. Owing to the special (i.e. exponential) 
structure of (lob), the functions g and h can be written in the form g = cg and h = ck This form has 
been used in the implementation. 

We take the following values for the parameters: L, = L ,  = 20,000 m, L, = 100 m, E = 0.5 m2 s-l, 
T, = 43,200 s (12 h), Tb = 32,400 s. The (dimensionless) parameter y can be used to adjust the 
solution. To stress the local nature of the concentration, we have chosen y as large as 30. For the length 
of the integration interval T we have used two different values, namely TI = 10,800 s (3 h) and 
T2 = 432,000 s (which equals 5 days). The particular value will be specified in the tables 
of results (at these points in time the damping effects are exp(-f (TI)) x 0 - 37 and 
exp (-f (T2)) x 0 .024). The concentration c is assumed to be measured in kg m-3. 

The velocity fields are prescribed by the analytical expressions 

u(t ,x ,y ,z )  = C1 sin@ +J) sin(pZ)d(t), 

(11) 
V ( t , X , Y , Z )  = c2 cos(2+J) sin(pz)d(t), 

) W ( t , X , Y , Z )  = (-Z;cos(z+j) C1 +-s in(z+J)  c2 --cos(pZ) d( t ) ,  
LY 

with d(t) = cos(2dTp), C1 = 3, C2 = 4 and p = 0.05. We remark that these fluid velocities satisfy the 
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relation for local mass balance, i.e. 

au -+ - + - = 0, 
dx ay dz 

so that (lOa) can be simplified indeed to the form (2); the fall velocity term wfis not taken into account 
in our tests. 

To obtain insight to what extent the length of the vectors will influence the performance of the 
algorithms, we have done experiments on two spatial grids: grid I is defined by J = K = 101 and 
M = 1 1, amounting to about 1 O5 grid points; grid I1 is defined by J = K = 20 1 and M = 2 1, amounting 
to about 8-5 X 10’ grid points. 

5.1. Algorithmic tests of the time integration methods 
First we will compare the time integrators with respect to their numerical properties such as 

accuracy and stability. Therefore they are applied to problem (1 0), (1 1) defined on grid I. In Table 111 
we show the (numerical) behaviour of the OELH method and several stabilized RK methods based on 
q stages (in the sequel these methods will be denoted by RK2q). As the end point of the integration we 
choose TI = 10,800. This table shows that OELH is the most stable time integration process (an 
asterisk denotes unstable behaviour). Moreover, it is quite accurate, since already for At as large as 135 
the time integration error is almost negligible compared with the spatial dwcretization error, which is 
approximately equal to 0.0005 for this grid. Figures 2(a) and 2(b) show the initial concentration 
c(0, x, y, z) according to (lob) and the numerical solution at t = TI obtained with the OELH method 
using At = 135. Furthermore, we observe that the stability of the RK methods is improved as the 
number of stages increases. 

The next question is of course which stabilized RK method is the most efficient one, i.e. what is the 
optimal q-value? To answer this question, we have to take into account the costs of the various stages. 
As pointed out in Section 3.2.1., an RK2q method requires two ‘expensive’ F-evaluations and q-2 
‘cheap’ F-evaluations per step (since the overhead in an RK method is negligible, we only count F- 
evaluations). Let (T denote the fraction that can be saved by evaluating a ‘cheap’ F. Then the total cost 
E(q, a) (in terms of full F-evaluations) over the whole integration interval is given by 
E(q,a):= Ns,[2 + (q - 2)(1 - a)], where Nst is the minimal number of time steps that has to be 
taken for stability reasons. If N,, is only determined by pimag, then E(q, (T) reduces to 
D[q(1 - a) + 2a]/(q - l), where D is a constant depending on the length of the integration 
interval and on the spectral radius of dF/BC. In this case E(q, (T) is a monotonically decreasing 
function of q, which suggests a large q-value (yielding increasing efficiency as r -+ 1). However, in 
practice the value of pEd is also relevant, especially if Az -+ 0 (see also the experiments described in 
Section 5.3). This is already noticeable from the maximally allowed time steps as listed in Table 111, 

Table 111. Global errors for OELH and several stabilized RK methods at I“, = 10,800 

Steps At OELH RK24 RK25 RK27 RK29 

10 1080 0-042 1 * * * * 
20 540 0.00875 * * * * 

0.00049 * * * 0-00038 
40 
80 135 
95 114 0.00049 * * 0.00040 0.00041 
125 86.4 0.00050 * 0.00043 0.00044 0.00044 
160 67.5 0.00050 0*00047 0*00046 0*00046 0.00046 

270 0.00 196 * * * * 
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Figure 2(a). The concentration c(t, x, y, z) for i = 0 at three horizontal planes, namely at the surface (z = 0), halfway down 
(z = -50 m) and at the bottom (z = -100 m) 
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Figure 2@). The computed concentration after 3 h (t = TI = 10,800) at three horizontal planes, namely at the surface (z = 0), 
h a l h y  down (z = -50 m) and at the bottom (z = -100 m). At the surface the maximum of the concentration equals 0.37. 
Furthermore, we see that the solution has been advected over 90" 

which show that the increase in At is less than might be expected on the basis of pimag. In conclusion, 
the optimal value of q depends on the ratio between (wl/Az and ~4(Az)~ and on the value of o. For the 
problem described in this section, q = 7 turned out to be a good choice. Therefore in the sequel we will 
confine ourselves to the OELH and RK27 methods. 

Next we let the methods be subjected to a more severe stability test by integrating up to 
T2 = 432,000. The results, given in Table W, reveal that both methods show a stability behaviour that is 
similar to their behaviour on the short integration interval. 
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Table IY Global errors for OELH and 
RK27 at Tz = 432,000 

Steps Ar OELH RK27 

750 576 0.0527 * 
800 540 0.00484 * 

1600 270 0.00174 * 
3200 135 0*00101 * 
3500 123 0.00098 * 
3800 114 0.00096 0.00080 
4000 108 0.00094 040081 

5.2. Peformance results 
In this subsection we describe the performance of both integration methods when implemented on 

the Cray C98/4256, which is a four-processor machine. In all experiments we used the CF77 compiling 
system. Performance results in scalar and vector modes are respectively obtained using cf77-Wf" -0 

novector" and ct77 -Zv. Moreover, we frequently used the package perfview4 (using the flags -F and 
-1perf) to obtain the megaflop rates (i.e. lo6 floating point operations per second) and CPU times of the 
various routines. All experiments have been performed on one processor. Since the clock cycle time of 
the Cray C98/4256 equals 4.2 ns and each processor is equipped with two vector pipes, the optimal 
vector speed equals 476 Mflops; in the exceptional case that a multiply and an addition can always be 
chained, this theoretical peak performance can be multiplied by a factor of two. 

In Table V the performance results (on grid I and end point TI = 10,800) are given for the RK27 
method using the smallest number of steps, i.e. N,, = 95. 

The performance results for the OELH method are given in Table VI. Here we used Nst = 80, 
corresponding to At = 135. This time step yields a global error which is comparable with that of the 
RK27 method using the largest possible step. 

These tables give rise to the following remarks and conclusions. 

Table V Vector performance of the main routines in RK27 
~~~ ~ ~~~~ 

Average time Accumulated percentage 
Routine Number of calls (s) of CPU time spent Mflop rate 

F (derivative) 665 5.7 x 1 0 - ~  74.9 549 
G (source term) 190 4.4 x 10-3 91.6 516 
RK (driver) 1 3.7 x lo-' 98.8 503 

Table VI. Vector performance of the main routines in OELH 

Number of Average time Accumulated percentage 
Routine calls (s) of CPU time spent Mflop rate 

F (derivative) 161 4-4 x 10-3 35.8 354 
G (source term) 161 3.0 x 10-3 60.1 395 
TRI3P3 (tridiagonal solver) 160 1.6 x 1 0 - ~  73.0 544 
JACOB (evaluates Jacobian) 160 1.2 x 1 0 - ~  82.7 219 
IMPL (solves implicit relation) 160 1 . 1  x 1 0 - ~  92.0 197 
HS (driver) 1 8.5 X lo-' 96.3 426 
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The high megaflop rates obtained in most routines clearly indicate that both time integrators 
vectorize extremely well. Since these methods have attractive numerical properties as well, they are 
both candidates for the efficient solution of transport problems. 
Except for the driver, most routines in OELH are called about 2Nst times; the factor of two 
originates from the fact that the OELH method has two stages (notice that the fast form of OELH 
requires some initialization, resulting in one extra call of F and G). Observe that the average time 
spent in F is lower than the corresponding time for RK27. This is because OELH needs to evaluate 
(per call of F) only half the number of points. The stride 2 that is involved in the hopscotch 
algorithm reduces the vector performance. The same arguments apply to G. This stride effect is 
more pronounced in the routines IMPL and JACOB, since there the number of arithmetic 
operations is relatively low. 
It should be remarked that in our test problem the g-function is unrealistically expensive. This is 
because we have used this function to let the prescribed concentration (lob) be the exact solution. 
In real-life problems this function will be much cheaper. If we ignore the time that the integrators 
spend in the routine G, then RK27 spends 89.9% of its time in the derivative function; for OELH 
this change would result in 47.4% for F. For a code based on an implicit method this percentage is 
pretty high, showing that the linear algebra part is efficiently treated by the vectorization-across- 
tridiagonal-systems approach. It is of interest to mention that if this part were performed in the 
traditional (i.e. recursive and hence non-vectorizable) way, then the first three lines in Table VI 
would change to the following: 

Average time Accumulated percentage 
Routine Number of calls (s) of CPU time spent Mflop rate 

TRI3P3 (tridiagonal solver) 160 3.5 x lo-* 76.5 25 
F (derivative) 161 4.4 x 1 0 - ~  86.2 354 
G (source term) 161 3.0 x 1 0 - ~  92.7 395 

This is in accordance with the usual experience that an implicit method spends most of its time in 
solving the systems. 

Of course, more interesting than the vector performance of the algorithms is the actual CPU time 
that they need to arrive at an accurate solution. A global performance is given in Table VII, where we 
have given the performance in scalar mode as well. From this table we see that the methods are more 
than 10 times faster when run in vector mode; this factor confirms the excellent vectorization 
capabilities of both algorithms. Furthermore, it is clear that the OELH method is able to produce an 
accurate result in roughly 40% of the time needed by RK27. Although this last method shows a very 
high megaflop rate, its time step restriction makes it less efficient than OELH. 

Table VII. Global performance of OELH and RK27 on grid I 

RK27 (Ns, = 95) OELH (Nst = 80) 

~ ~~ ~ ~~~~ 

Scalar 20-8 34 69-9 39 
Vector 2.0 366 5.1 538 
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Table VIII. Global errors (on grid 11) for OELH 
and RK27 at TI = 10,800 

Steps At OELH RK27 

10 1080 0.024 * 
20 540 0.0053 * 
40 270 0.0013 * 
80 135 0.00028 * 

160 67-5 0-000 1 3 * 
280 38.6 0~00012 * 
290 37.2 0.00012 0-468 
300 36.0 0-00012 0*00012 
320 33.75 0~00012 0~00012 

5.3. Influence of the spatial grid 
Next we solve the problem (lo), (1 1) discretized on grid 11. It is to be expected that the 

refinement of the spatial grid will have an influence on the accuracy, stability and vector 
performance. For the end point of the integration interval we choose T I .  The results are listed in 
Table VIII. 

For At + 0 the error on both methods converges to 0.00012, which is the spatial discretization error 
on this fine grid. This value is four times smaller than the error obtained on grid I (see Table III), which 
is in agreement with the second-order spatial discretization that we have used. 

With respect to stability we may conclude that the OELH method behaves as stably as it did on the 
‘coarse’ grid. However, owing to the increased stiffness of the resulting ODE, the RK27 method is 
forced to take time steps that are reduced by a factor of three. This factor indicates that the terms 
originating from the diffusion part and from the advection part in the PDE are both of influence on the 
maximal time step: if one of these terms would have been dominating, then one would obtain a 
reduction of the time step by a factor of four or two respectively. 

Table IX. Vector performance of the main routines in RK27 (grid 11, N,, = 300) 

Routine Number of calls Average time (s) Accumulated percentage Mflop rate 
of CPU time spent 

F (derivative) 2100 3.9 x 
G (source term) 600 3.0 X 
RK (driver) 1 7.8 

75.7 
9 2 4  
99.5 

599 
574 
514 

Table X. Vector performance of the main routines in OELH (grid 11, Ns, = 80) 

Routine Number of Average time Accumulated percentage Mflop rate 
calls (s) of CPU time spent 

F (derivative) 161 2.5 X loT2 34.6 

TRI3P3 (tridiagonal solver) 160 1.2 x 75-0 
IMPL (solves implicit relation) 160 5.9 x 1 0 - ~  83.1 
JACOB (evaluates Jacobian) 160 5.5 x 10-3 90.7 
HS (driver) 1 6.3 X lo-’ 96.2 

G (source term) 161 1.7 X 57.7 
467 
526 
534 
289 
335 
436 
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Table XI .  Parallel performance of OELH estimated by atexpert 

Processors 1 2 3 4 5 6 7 8 
Speed-up 1.00 1-98 2.94 3.88 4-84 5.72 6.70 7.54 

Processors 9 10 11 12 13 14 15 16 
Speed-up 8.42 9.26 9-99 10.74 11.98 12.60 13-42 14.15 

It is also of interest to see the influence of the grid refinement (i.e. longer vectors) on the performance. 
Tables IX and X give this information for RK27 (with N,, = 300) and OELH (using Nst = 80) 
respectively. Comparing Tables V and IX, we see that the performance of RK27 is slightly improved: 
the 'coarse' grid I is sufficiently fine to let this method run at a speed close to the optimal speed. The 
overall performance of this method increases from 538 to 587 Mflops. A comparison of Tables VI and 
X shows that the average Mflop rate of the OELH method is increased by approximately 25% (the 
overall performance changes from 366 to 465 Mflops). 

5.4. Parellelization aspects 
Finally we consider the prospects that the methods offer with respect to parallelization. In both codes 

we frequently encounter the situation that we have a three-times-nested loop of the following structure: 

DO 10 k = 1, K (in horizontal space direction) 
DO 10 m = 1, M (in vertical space direction) 
DO 10 j = 1, J (in horizontal space direction) 

... 
body of the loop 
... 

10 CONTINUE 

A typical treatment of such loops on parallelhector machines is to vectorize the inner loop (indexj) 
and to parallelize the outer loop (index k), whereas the loop with index m is performed in sequential 
mode (or, if possible, collapsed with the j-loop). 

We have used the autotasking facility of the Cray (specifying cf77 -Zp activates the Fortran 
preprocessor FPP to analyse the code) to get an indication of the speed-up that can be obtained for 
OELH when various vector pipes are used. To this end we employed the so-called atexpert utility! 
Atexpert is capable of producing predictions of the performance on a dedicated system. The results 
obtained by this utility, when running OELH on the coarse grid, are given in Table XI. The speed-up 
factors clearly indicate that the OELH method efficiently exploits a multiprocessor machine like the 
Cray. 

6. CONCLUDING REMARKS 

In this paper we have discussed stabilized Runge-Kutta (RK) methods and the odd-even line 
hopscotch (OELH) method. From a previous evaluation study' both types of methods turned out to be 
suitable candidates for the time integration of a three-dimensional numerical transport model. These 
methods have quite different numerical properties: the RK methods are explicit and hence have to obey 
a rather restrictive step size condition; since the OELH method is partly implicit, this method is in 
many practical situations not hampered by such a stability-induced step size restriction. The two 
methods also differ with respect to vectorization capabilities: because of the extremely simple nature of 
the RK methods, they are straightforwardly implemented on a vector processor machine. On the basis 
of large-scale test problems (about 105-106 unknowns), we measured a vector performance of over 
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500 Mflops on a one-processor Cray C9814256 (having a clock cycle of 4.2 ns). At first sight the 
OELH method seems to be less suitable for vectorization, since it has to solve tridiagonal systems. 
However, since all these systems are uncoupled, they can be efficiently implemented on vector 
machines. Following this approach, which was initially proposed by Golub and Van Loan: the overall 
performance of the OELH method turns out to be 366-465 Mflops. Of course, these high Mflop rates 
only show that the methods are well suited for vectorization; a good numerical solver should in 
addition have proper algorithmic characteristics, resulting in the ultimate goal of small CPU times. 
Comparing the two methods in this respect, we see that the OELH method is by far superior to the RK 
methods. The fact that OELH can take much larger time steps easily compensates for the lower vector 
speed. Furthermore, we have seen that OELH is also capable of exploiting the parallel facilities offered 
by multiprocessor architecture. 

As explained in Section 3, we have chosen the so-called ‘dummy point’ approach, which means that 
the physical domain is enclosed by a rectangular box. In the test problem discussed in Section 5, this 
approach did not lead to dummy points, so that all floating point operations were really useful 
operations. In practical situations, however, where we have capricious geometries (e.g. in estuaries, 
coasts and bottom profiles), the situation is less ideal and the introduction of dummy points is 
unavoidable. In such cases we should consider an effective Mflop rate, which obviously has to be 
related to the number of usefil (i.e. effective) floating point operations. However, this observation 
applies to any integration method, since this ‘dummy point’ approach is inherent to the spatial 
discretization and the choice of the data structures. 

Summarizing, we conclude that the OELH method is an efficient method for the time integration of 
three-dimensional transport models because it combines in a suitable way the following properties: 
sufficient accuracy, sufficient stability, modest storage requirements, almost optimal vectorization and 
parallelization capabilities and low computational costs. 
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